Ludwig C. Nitsche

Associate Professor of Chemical Engineering
Associate Dean for Undergraduate Affairs, College of Engineering

Chemical Engineering Building (CEB), Room 215
Phone: (312) 996-3469
Fax: (312) 996-0808

Refereed Journal Publications

[27] V. Sharma, M. Köllmer, M. Szymusiak, L. C. Nitsche, R. A. Gemeinhart and Y. Liu, Toroidal-spiral particles for codelivery of anti-VEGFR-2 antibody and irinotecan: A potential implant to hinder recurrence of glioblastoma multiforme, Biomacomolecules, 15 (3), 756-762 (2014). DOI: 10.1021/bm401550r.

[26] L. C. Nitsche and P. Parthasarathi, Stokes flow singularity at the junction between impermeable and porous walls. J. Fluid Mech., 713, 183-215 (2012). DOI:10.1017/jfm.2012.454. Supplementary Material.

[25] M. Szymusiak M, V. Sharma V, L. C. Nitsche and Y. Liu, Interaction of sedimenting drops in miscible solution - formation of heterogeneous toroidal-spiral particles. Soft Matter, 8, 7556-7559 (2012). DOI: 10.1039/c2sm25928a.

[24] V. Sharma, M. Szymusiak, H. Shen, L. C. Nitsche, and Y. Liu, Formation of polymeric Toroidal-spiral particles, Langmuir, 28, 729-735 (2012). DOI: 10.1021/la203338v.

[23] Y. Lei, J. Jelic, L. C. Nitsche, R. Meyer and J. Miller, Effect of particle size and adsorbates on the L3, L2 and L1 X-ray absorption near edge structure of supported Pt nanoparticles. Topics in Catalysis, 54, 334-348 (2011). DOI 10.1007/s11244-011-9662-5.

[22] L. C. Nitsche and P. Parthasarathi, Cubically regularized Stokeslets for fast particle simulations of low-Reynolds-number drop flows. Chem. Eng. Commun., 197, 18-38 (2010). DOI: 10.1080/00986440903070809.

[21] N. S. Parkar, B. S. Akpa, L. C. Nitsche, L. E. Wedgewood, M. S. Sverdlov, O. Chaga and R. D. Minshall, Vesicle formation and endocytosis: Function, machinery, mechanisms, and modeling (Forum Review Article). Antioxidants & Redox Signaling, 11, 1301-1312 (2009). DOI: 10.1089/ars.2008.2397.

[20] L. C. Nitsche, Accurate asymptotic formulas for the transient PDF of a FENE dumbbell in suddenly started uniaxial extension followed by relaxation. J. Non-Newtonian Fluid Mech., 135, 109-116 (2006). DOI: 10.1016/j.jnnfm.2006.01.008.

[19] L. C. Nitsche, W. Zhang and L. E. Wedgewood, Asymptotic basis of the L-closure for finitely extensible dumbbells in suddenly started uniaxial extension. J. Non-Newtonian Fluid Mech., 133, 14-27 (2006). DOI:10.1016/j.jnnfm.2005.10.004.

[18] L. C. Nitsche, A. Nguyen and G. Evans, Globally cohesive drops without interfacial tension. Chem. Phys. Lett., 397, 417-421 (2004). DOI:10.1016/j.cplett.2004.09.006.

[17] S. Murad and L. C. Nitsche, The effect of thickness, pore size and structure of a nanomembrane on the flux and selectivity in reverse osmosis separations: a molecular dynamics study. Chem. Phys. Lett., 397, 211-215 (2004). DOI:10.1016/j.cplett.2004.08.106.

[16] L. C. Nitsche, G. Machu and W. Meile, Wavelets and fast summations for particle simulations of gravitational flows of miscible drops. Computers Chem. Eng., 28, 1873-1879 (2004). doi:10.1016/j.compchemeng.2004.03.001.

[15] L. C. Nitsche and W. Zhang, Atomistic SPH and a link between diffusion and interfacial tension. AIChE Journal, 48, 201-211 (2002).

[14] L. C. Nitsche and U. Schaflinger, A swarm of Stokeslets with interfacial tension. Phys. Fluids., 13, 1549-1553 (2001).

[13] G. Machu, W. Meile, L. C. Nitsche and U. Schaflinger, Coalescence, torus formation and break-up of sedimenting drops: experiments and computer simulations. J. Fluid Mech., 447, 299-336 (2001). DOI: 10.1017/S0022112001005882.

[12] L. C. Nitsche and E. J. Hinch, Shear-induced lateral migration of Brownian rigid rods in parabolic channel flow. J. Fluid Mech., 332, 1-21 (1997).

[11] L. C. Nitsche, Fluctuation-flipping orbits of freely-draining dumbbells in converging-diverging pore flows. Chem. Eng. Commun., 148-150, 593-621 (1996).

[10] L. C. Nitsche, One-dimensional stretching functions for patched grids, and associated truncation errors in finite-difference calculations. Commun. Numer. Methods. Eng., 12, 303-316 (1996).

[9] L. C. Nitsche, Cross-stream migration of bead-spring polymers in nonrectilinear pore flows. AIChE Journal, 42, 613-622 (1996).

[8] L. C. Nitsche, A singular perturbation analysis of antipolarization dialysis at high aspect ratio. Ind. Eng. Chem. Research, 34, 3590-3605 (1995).

[7] L. C. Nitsche and S. Zhuge, Hydrodynamics and selectivity of antipolarization dialysis. Chem. Eng. Sci., 50, 2731-2746 (1995).

[6] P. S. Grassia, E. J. Hinch and L. C. Nitsche, Computer simulations of Brownian motion of complex systems. J. Fluid Mech., 282, 373-403 (1995).

[5] L. C. Nitsche, Pseudo-sedimentation dialysis: an elliptic transmission problem. Quart. Appl. Math., LII, 83-102 (1994).

[4] E. J. Hinch and L. C. Nitsche, Nonlinear drift interactions between fluctuating colloidal particles: oscillatory and stochastic motions. J. Fluid Mech., 256, 343-401 (1993).

[3] L. C. Nitsche and H. Brenner, Hydrodynamics of particulate motion in sinusoidal pores via a singularity method. AIChE Journal, 36, 1403-1419 (1990).

[2] L. C. Nitsche and H. Brenner, Eulerian kinematics of flow through spatially periodic models of porous media. Arch. Rational Mech. Anal., 107, 225-292 (1989).

[1] L. C. Nitsche, J. M. Nitsche and H. Brenner, Existence, uniqueness and regularity of a time-periodic probability density distribution arising in a sedimentation-diffusion problem. SIAM J. Math. Anal., 19, 153-166 (1988).