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Accurate asymptotic formulas for the transient PDF of a FENE dumbbell
in suddenly started uniaxial extension followed by relaxation
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Abstract

Singular perturbation theory is combined with the method of multiple scales to derive an asymptotic solution for the transient, one-dimensional
probability density function (PDF) of a FENE dumbbell in a suddenly started uniaxial extensional flow. We consider the dual asymptotic limit of
large dimensionless spring length, L = ε−1, and large dimensionless elongation rate (or Weissenberg number), � = γ/ε, with these two quantities
remaining in a fixed (arbitrary) proportion, γ . The analytical formula for the transient PDF agrees closely with numerics in both (i) the central,
approximately Gaussian core, and (ii) a thin boundary layer near the limit of extension [see, e.g., R. Keunings, J. Non-Newtonian Fluid Mech. 68
(1997) 85–100]. Stress buildup and stress–extension curves are well predicted. We also explain the collapse of different dumbbell lengths onto a
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ingle stress–extension line, τ = 2�〈x 〉, which has been observed numerically in connection with transient stress-birefringence [P.S. Doyle, E.S.G.
haqfeh, G.H. McKinley, S.H. Spiegelberg, J. Non-Newtonian Fluid Mech. 76 (1998) 79–110]. This result agrees with the large-strain plateau in

he transient stress-optic coefficient for large Weissenberg number [R. Sizaire, G. Lielens, I. Jaumain, R. Keunings, V. Legat, J. Non-Newtonian
luid Mech. 82 (1999) 233–253]. For relaxation of the FENE dumbbell from its fully stretched configuration, a Gaussian approximation of the
DF—whose time-dependent position and width are given by closed analytical formulas—matches the numerical results extremely well. The slope
f the advective velocity is interpreted as a negative contribution to the effective diffusion coefficient. The asymptotic theory supports the recently
roposed L closure [G. Lielens, P. Halin, I. Jaumain, R. Keunings, V. Legat, J. Non-Newtonian Fluid Mech. 76 (1998) 249–279].

2006 Elsevier B.V. All rights reserved.
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. Introduction

In the transient rheology of dilute polymer solutions, the
ehavior of a finitely extensible nonlinearly elastic (FENE)
umbbell immersed in a suddenly started, uniaxial extensional
ow represents a long-standing and ubiquitous problem
2,10,24,25], which is often compared with more complicated
odels of polymers [5–7,21,29,31]. The conformational state

f the dumbbell at any time is described in statistical terms by a
istribution of probability density over all possible end-to-end
ectors (length and orientation). Macroscopic rheological prop-
rties can be calculated as integrals of the probability density
unction (PDF). The stretching mode emerges as the most
mportant degree of freedom in elongational flow [10,11,22],
nd the associated one-dimensional PDF, P(x, t̂), is governed
y a standard (dimensionless) Smoluchowski equation, which

∗ Tel.: +1 312 996 3469; fax: +1 312 996 0808.
E-mail address: lcn@uic.edu (L.C. Nitsche).

balances local accumulation of probability at each length x with
fluxes due to the (nonlinear) connecting spring, hydrodyamic
drag on the beads, and Brownian motion [2,10,24,25].

∂P

∂t̂
+ ∂

∂x

{(
� − 1

2

1

1 − x2/L2

)
xP − 1

2

∂P

∂x

}
= 0,

0 < x < L (1)

with L the dimensionless limit of extension. Typically the
finite extensibility parameter L2 can range from 50 to over
4000 [6,8,10,21], which makes L → ∞ a physically realistic
asymptotic limit. The dimensionless elongation rate � is
equivalent to a Weissenberg number.

Because Eq. (1) has, as yet, eluded analytical solution, an
extensive literature has grown around averaging and closure
schemes, which proceed from reasonable (but mathematically
ad hoc) simplified assumed shapes for the PDF, to reduce
the Smoluchowski equation to one or more ODEs governing
the time dependence of the relevant shape parameters. Most
common has been the Gaussian shape [16,18,26,28,32], whose
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qualitative limitations were recently remedied by the box-spike
shape of the L closure [11,12]. Numerical solutions provide
valuable insight and a quantitative test for such approximations;
stochastic simulations have emerged as the most prominent com-
putational method for this problem [8,10–12,17].

The availability of numerically calculated PDFs does not
diminish the desirability of an analytical solution to Eq. (1),
because the latter would offer mechanistic explanations for the
observed behavior in concise mathematical language, and would
also make accurate calculations for an important class of FENE
problems much easier and very quick on a personal computer.

This paper presents an asymptotic solution, based upon the
method of singular perturbations, which compares very favor-
ably with numerical results—even for moderate values of L.
Our derivation also provides a rigorous theoretical basis for the
L closure.

2. Overview of the asymptotic method

The asymptotic approach used here—singular perturbations
combined with multiple timescales [1]—exploits key qualitative
features of the behavior of the FENE dumbbell as it gets stretched
by the elongational flow. These features were first elucidated
numerically [10,11,21]. At the initial equilibrium, the PDF is
a roughly Gaussian peak, which represents a balance between
Brownian fluctuations tending to extend the dumbbell and the
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• Here the outer solution is derived through second order,
whereas the previous paper did not involve the outer solu-
tion in detail.

• The inner solution is extended from the previous leading-
order result to the first correction. In the process we expose
the source of asymmetry in the boundary layer.

We define the small perturbation parameter ε = L−1, and
consider an asymptotically large elongation rate � = γε−1. Re-
cast in terms of a reduced time variable t = ε−1 t̂, Eq. (1) be-
comes

∂P

∂t
+ ∂

∂x

{(
γ − ε

2

1

1 − ε2x2

)
xP − ε

2

∂P

∂x

}
= 0,

0 < x < ε−1 (2)

3. Outer solution

The initial, equilibrium PDF is obtained by solving the
steady-state version of Eq. (2) with γ = 0. The exact solution

P(x, 0) =
{∫ ε−1

0

(
1 − ε2x2

)1/(2ε2)
dx

}−1 (
1 − ε2x2

)1/(2ε2)

(3)

is actually less useful than the asymptotic formula
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estoring force of the spring. A sufficiently strong elongational
ow (here we will assume asymptotically large �) overpowers

he linear regime of the spring at small extensions x, and pulls
robability outward. The probability density in the central core
outer solution) eventually decays to zero as if the dumbbell were
nfinitely extensible. Whatever probability would have extended
eyond x = L at any time gets rearranged into a second, much
hinner peak (inner solution) just short of x = L.

The asymptotic analysis of Nitsche et al. [15] for the FENE
umbbell with variable friction [4,6,9,19,20,23] applied to the
imit L → ∞. In combination with an ord(1) elongation rate �,
he linear growth of the bead friction coefficient with extension
as sufficient to compress the outwardly accumulating proba-
ility against the (soft) stop of the spring into an asymptotically
hin boundary layer. Correspondingly, a separation of timescales
merged, whereby the boundary layer equilibrated to the incom-
ng probability density much faster than the central peak drained
ff into the boundary layer.

For the FENE dumbbell with fixed friction, Eq. (1), the
eak near the limit of extension is not asymptotically narrow
s L → ∞. Motivated by numerical observations along these
ines, Lielens et al. [11] formulated an extended L closure, in
hich the terminal delta-function spike was widened into a rect-

ngular box. Here we consider a dual asymptotic limit, in which
increases in proportion to L. This assumption recovers the

oundary-layer character of the problem.
Aside from developing the asymptotic solution for a different

umbbell model (FENE with fixed friction versus FENE with
ariable friction), this paper goes beyond the analysis of Nitsche
t al. [15] in two ways—to obtain quantitatively accurate PDFs
t moderate values of L.
(x, 0) ∼
(

2

π

)1/2

exp

(
−x2

2

) [
1 + ε2

(
3

4
− x4

4

)
+ · · ·

]
(4)

hat reveals the roughly Gaussian shape.
At first glance the nonlinear FENE factor in Eq. (2) seems to

ose a serious difficulty—until one examines the characteristic
urves (x versus t) associated with the advective portion of the
ux,

dx

dt
= v(x; ε, γ) =

(
γ − ε

2

1

1 − ε2x2

)
x, x(0) = x0 (5)

or which the exact solution is

= 1

γ − ε/2

{
ln

(
x

x0

)
− ε

4γ
ln

[
2γ(1 − ε2x2) − ε

2γ(1 − ε2x2
0) − ε

]}
(6)

ven when ε is not very small, the only discernible effect of
he FENE factor is to cause the characteristic curve to level off
ery abruptly at the terminal value

∗(ε, γ) = ε−1
√

1 − ε

2γ
(7)

t which v vanishes. One obtains essentially indistinguishable
esults by neglecting the FENE factor in the velocity,

dx

dt
=

(
γ − ε

2

)
x (8)

nd simply truncating the solution:

(t) ≈
{

x0e(γ−ε/2)t , t ≤ t∗

x∗, t > t∗
t∗ = ln(x∗/x0)

γ − ε/2
(9)
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This observation commends using a much simpler Smolu-
chowski equation with a linear advective term

∂P [O]

∂t
+ ∂

∂x

{(
γ − ε

2

)
xP [O] − ε

2

∂P [O]

∂x

}
= 0 (10)

throughout the outer region 0 ≤ x < x∗(ε, γ). The initial PDF
from Eq. (4) suggests the regular perturbation expansion

P [O](x, t; ε) = P
[O]
0 (x, t; ε) + ε2P

[O]
2 (x, t; ε) + · · · (11)

where both of the functions P
[O]
0 (x, t; ε) and P

[O]
2 (x, t; ε) satisfy

Eq. (10) with the respective initial conditions

P
[O]
0 (x, 0; ε) =

(
2

π

)1/2

exp

(
−x2

2

)
(12)

P
[O]
2 (x, 0; ε) =

(
2

π

)1/2 (
3

4
− x4

4

)
exp

(
−x2

2

)
(13)

Eq. (10) is exactly solvable for a Gaussian initial PDF:

P
[O]
0 (x, t; ε) = 1

�(t)

(
2

π

)1/2

exp

{
−1

2

[
x

�(t)

]2
}

(14)

with

�(t) =
{(

1 + ε

2γ − ε

)
e(2γ−ε)t − ε

2γ − ε

}1/2

(15)
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For the rate of change of accumulated probability we find

A′(t) ∼
(
γ − ε

2

)
x∗P [O](x∗, t)

+ ε√
2π

x∗

[�(t)]3 exp

{
−1

2

[
x∗

�(t)

]2
}

(21)

The second term is the diffusive flux, which contributes at the
same order as the ε portion of the advective flux from P

[O]
2 .

4. Inner Solution

The boundary layer is centered at x = x∗, Eq. (7), where the
advective velocity vanishes. Using the stretched inner coodinate

η = ε−1(x − x∗) (22)

the Smoluchowski Eq. (2) can be written as follows:

ε
∂P [I]

∂t
+ ∂

∂η

{ [
V0(η) + εV1(η) + ε2V2(η) + · · ·

]
P [I]

−1

2

∂P [I]

∂η

}
= 0

(23)

with

V 2

V

V

g

P

w

τ

T
t
p

y
a

t
t
T

o solve for P
[O]
2 (x, t; ε) we can neglect the diffusion term in

q. (10), as this will contribute (i) at order ε while the peak is of
rd(1) width, and (ii) even less as the peak widens. The resulting
rst-order PDE can be solved by the method of characteristics
3] to yield

[O]
2 (x, t; ε) ∼ e−(γ−ε/2)tP

[O]
2

(
xe−(γ−ε/2)t , 0; ε

)
(16)

[O]
2 (x, t; ε) ∼

(
2

π

)1/2 [
3

4
− 1

4

(
xe−(γ−ε/2)t

)4
]

× exp

[
−

(
γ − ε

2

)
t − 1

2

(
xe−(γ−ε/2)t

)2
]

(17)

In summary, the outer solution through second-order terms
s given by Eqs. (11), (14), (15) and (17). As far as the bound-
ry layer is concerned, the important quantity is the cumulative
mount of probability A that accumulates beyond x∗.

(t) def=

∫ ∞

x∗
P [O](x, t) dx (18)

(t) ∼ erfc

[
x∗

�(t)
√

2

]
− ε2

4

(
2

π

)1/2

[X∗(t)]
{

3 + [X∗(t)]2
}

× exp

{
−1

2
[X∗(t)]2

}
(19)

ith

∗(t) = x∗e−(γ−ε/2)t (20)
0(η) = −4γ η (24)

1(η) = 2γη(1 − 8γ2η) (25)

2(η) = 2γ2η2(3 − 32γ2η) (26)

The ε factor multiplying the time derivative in Eq. (23) sug-
ests that we should use the two-timescale expansion

[I](η, t; ε) ∼ ε−1P
[I]
0 (η, τ, T ) + P

[I]
1 (η, τ, T ) + · · · (27)

ith the fast and slow time variables

= ε−1t, T = t (28)

he asymptotic expansion (27) begins at order ε−1 in order that
he inner solution can accumulate ord(1) probability within a
eak of ord(ε) width.

Substituting Eq. (27) into the inner Smoluchowski Eq. (23)
ields a hierarchy of parabolic partial differential equations in η

nd τ, with the slow time variable T appearing as a parameter

∂P
[I]
0

∂τ
+ ∂

∂η

[
V0(η)P [I]

0 − 1

2

∂P
[I]
0

∂η

]
= 0 (29)

∂P
[I]
1

∂τ
+ ∂

∂η

[
V0(η)P [I]

1 − 1

2

∂P
[I]
1

∂η

]

= −∂P
[I]
0

∂T
− ∂

∂η

[
V1(η)P [I]

0

]
(30)

The two-timescale analysis of Nitsche et al. [15] shows how
he boundary-layer solution equilibrates rapidly (on the fast
imescale τ) to the influx of probability (on the slow timescale
) from the outer solution. These detailed considerations boil
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down to the following simplified operational procedure. At each
order one solves for the steady-state PDF that corresponds to
the limit τ → ∞ in Eqs. (29) and (30). The free “constants” that
arise (which are actually functions of the slow time parameter T)
are determined by maintaining the total probability—integrated
over the inner PDF—at the value A(T ) given by Eq. (19). At
leading order we find

P
[I]
0 (η, T ) = A(T )

(
2γ√
π

)
e−(2γη)2

(31)

To obtain quantitatively accurate results at moderate values
of ε, we must carry the analysis one order farther than did the
analogous work [15] on FENE dumbbells with variable friction.
Solving the steady-state version of Eq. (30),

d

dη

[
V0(η)P [I]

1 − 1

2

dP
[I]
1

dη

]

= −
(

2γ√
π

) {
A′(T )e−(2γη)2 + A(T )

d

dη

[
V1(η)e−(2γη)2

]}
(32)

we find the first correction to the inner PDF:

P
[I]
1 (η, T ) = A(T )√

π

[
(2γη)2 − 8γ

3
(2γη)3 − 1

2

]
e−(2γη)2

{ [

H

G

I
l
s

G

In deriving Eq. (33), we have chosen the constants of inte-
gration to (i) yield zero flux at the limit of extension, and (ii)
prevent the first correction altering the total probability—which
had already been set in the boundary layer at zeroth order:

0 =
∫ 1

0
P

[I]
1

(
x − x∗

ε
, T

)
dx

= ε

∫ ∞

−x∗/ε
P

[I]
1 (η, T ) dη +

{
Exponentially

small terms

}
(36)

Note the appearance of an O(ln ε) term, proportional to the ho-
mogeneous solution P

[I]
0 (η, T ), between the ord(ε−1) and ord(1)

terms in the perturbation expansion (27).
Eq. (33) reveals two sources of asymmetry in the bound-

ary layer. One of these, which is proportional to the cumulative
probability A(T ), persists through to the final steady state. The
other, proportional to the rate of arrival of probability A′(T ), is
a transient effect.

5. Inner–outer matching and complete PDF

To bridge between the outer and inner solutions, consider an
intermediate (matching) regime within ord(1) distance of x∗, for
which we define the coordinate

ζ = x − x∗ = εη < 0 (37)

I

ε

A
a
i
d
fl[
T

P

T
t
b
T
t
P

P
t
a

+ A′(T )

γ
G(2γη) − 1√

π
1.4452

+ 1

2
ln

(
2γx∗

ε

)]
e−(2γη)2

}
(33)

ere the function G is given by

(α) = e−α2
∫ ∞

α

F (β)eβ2
dβ,

F (β) =
{

− 1
2 erfc(−β) + 1, β < 0

1
2 erfc(β), β ≥ 0

(34)

t is straightforward to interpolate function values G(α) from a
ook-up table generated by numerical quadrature of Eq. (34);
ee Fig. 1. We note the asymptotic behavior

(α) ∼ −1/(2α) as α → −∞ (35)

Fig. 1. The function G(α) defined in Eq. (34).
n this vicinity the Smoluchowski Eq. (2) becomes

∂P [M]

∂t
+ ∂

∂ζ

{[
−4γ2ζ + O(εζ)

]
P [M] − ε2

2

∂P [M]

∂ζ

}
= 0

(38)

gain the ε factor multiplying the time derivative suggests a sep-
ration of timescales. But now—in contrast with the case for the
nner solution—advection dominates over diffusion. Skipping
etails of the two-timescale analysis, we find the leading-order
ux:

−4γ2ζ + O(εζ)
]
P [M] ∼ Constant = εA′(T ) (39)

hus

[M] ∼ −A′(T )

4γ2

(
ε

ζ

)
= −A′(T )

4γ2η
as ζ ↗ 0 (40)

his functional form constitutes the inner limiting behavior of
he outer solution, and it is consistent with the outer limiting
ehavior of the inner solution, as given by Eqs. (33) and (35).
herefore we were justified in extending the inner solution into

he outer domain in setting the normalization condition (36) on
[I]
1 .

In view of the above discussion of matching, the asymptotic
DF over the whole domain can be obtained simply by adding

he inner and outer solutions, as given by Eqs. (14), (17), (31)
nd (33):

P(x, t; ε) ∼ P
[O]
0 (x, t; ε) + ε2P

[O]
2 (x, t; ε)

+ ε−1P
[I]
0

[
ε−1(x − x∗), t

]
+ P

[I]
1

[
ε−1(x − x∗), t

]
(41)
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Fig. 2. Asymptotic vs. numerical PDFs plotted in the outer region for ε =
0.2, γ = 1 (L = 5, � = 5).

Figs. 2 and 3 show good agreement between this formula and
the corresponding numerical PDFs for ε = 0.2 and γ = 1. The
latter curves were calculated here using an atomistic smoothed
particle hydrodyamics (ASPH) method [14,15,30], although a
stochastic simulation [10,17] could also have been employed.

6. Stress buildup

Using the asymptotic PDF (41) for ε = 0.2 and γ = 1 in the
second moment equation and the Kramers integral for the stress
[2,8,10–12,21],

〈
x2

〉
=

∫ ε−1

0
P(x, t)x2 dx (42)

τ(t) =
∫ ε−1

0
P(x, t)

x2

1 − ε2x2 dx − 1 (43)

we obtain (by numerical quadrature) stress buildup and stress–
extension curves that are seen in Figs. 4 and 5 to compare favor-
ably with the corresponding numerical curves. The discrepancy
between the asymptotic versus numerical terminal, steady-state
stresses in Fig. 4 can be traced to the order ε correction in the
inner PDF, which is not included in Eq. (41).

One particularly interesting conclusion follows immediately
from the dominance of the boundary-layer contribution in both
the integrals (42) and (43).

〈

F
0

Fig. 4. Asymptotic vs. numerical stress buildup curves for stretching of a FENE
dumbbell in a suddenly started uniaxial extensional flow. Here ε = 0.2 and γ = 1
(L = 5, � = 5).

Fig. 5. Asymptotic vs. numerical stress–extension curves for elongation fol-
lowed by relaxation. Here ε = 0.2 and γ = 1 (L = 5, � = 5).

τ(t) ∼ A(t)2γε−3 = A(t)2�L2 (45)

In the stress–extension plane we find a simple proportionality at
leading order:

τ ∼ 2�〈x2〉 (46)

For a fixed (large) value of � (Weissenberg number), the lines
for different (sufficiently large) finite extensibility parametersL2

should all collapse together. This result explains the analogous
numerical observation by Doyle et al. [6] with regard to tran-
sient stress-birefringence curves, and—for large Weissenberg
number—agrees with the large-strain plateau in the transient
stress-optic coefficient, as described by Sizaire et al. [21]. Eq.
(46) is shown as a dashed line in Fig. 5, and gives a rough but
useful indication of FENE stretching behavior even at ε as large
as 0.2.

7. Stress relaxation

The inner and outer solutions derived above hinge critically
on (i) the detailed asymptotic structure and scaling of the advec-
tive and diffusive terms in the Smoluchowski equation in each
regime, and (ii) the initial condition. Thus, a generic functional
form for the PDF—applicable to arbitrary strain histories and/or
strain-relaxation cycles—remains elusive. However, a particu-
l

x2〉 ∼ A(t)ε−2 = A(t)L2 (44)

ig. 3. Asymptotic vs. numerical PDFs plotted in the inner region for ε =
.2, γ = 1 (L = 5, � = 5).
 ar case allows analytical progress on the problem of memory
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effects in the rheology of dilute polymer solutions: relaxation
of the PDF from the final steady-state in elongation, once all of
the probability has accumulated in the boundary layer. Here we
must omit the � term from the Smoluchowski Eq. (1).

∂P

∂t̂
− ∂

∂x

{(
x/2

1 − ε2x2

)
P + 1

2

∂P

∂x

}
= 0, 0 < x < ε−1

(47)

P(x, 0) =
{∫ ε−1

0
e(γ/ε)x2

(1 − ε2x2)1/(2ε2) dx

}−1

× e(γ/ε)x2
(1 − ε2x2)1/(2ε2) (48)

For short times, before the PDF has retracted far from its fully
stretched configuration (48), we use the boundary layer coordi-
nate η from Eq. (22), and a time variable

s = ε−3 t̂ = ε−2t = ε−1τ (49)

that is one order faster than the fast time variable τ from Eq.
(28).

∂P

∂s
= ∂

∂η

{
V (η; ε)P + ε

2

∂P

∂η

}
(50)

with

V
ε

[ √
1 − ε/(2γ) + ε2η

]

V

u

P

T
t
E
I

M

w

M

M2(0) = 1

8γ2

[
1 + ε

(
1

2γ

)
+ ε2

(
4 + 1

4γ2

)
+ · · ·

]
(56)

From a numerical solution (not shown here) of the inner
Smoluchowski Eq. (50), the PDF appears to become even more
closely Gaussian as it retracts and broadens with advancing time
s. Thus we are motivated to approximate P(η, s) with the two-
parameter Gaussian function

P(η, s) = [2πM(s)]−1/2 exp

{
− [η − C(s)]2

2M(s)

}
(57)

Here C(s) is the location of the center of the peak (first moment),
and M(s) is the peak-centered second moment,

M(s) =
∫ ∞

−∞
[η − C(s)]2P(η, s) ds (58)

It is expedient to track C(s) with the advective velocity
V [C(s); ε] right at this (moving) point. The truncated velocity
formula (52) then yields an ODE

dC
ds

= − γ − ε/4

1 − 4γεC(s)
, C(0) = M1(0) (59)

that can readily be solved:

C(s) = 1 [
1 − √

As + B
]

(60)

w

A

B

W
n
i

e
a
e
s
“

l

w

M

F

M

(η; ε) =
2 1 − (√

1 − ε/(2γ) + ε2η
)2 (51)

(η; ε) ∼ γ

[
1 − ε/(4γ) + O(ε2)

1 − 4γεη + O(ε2)

]
(52)

The roughly Gaussian shape of the initial PDF (48) emerges
pon writing it as a function the inner variable η.

(η, 0) =
(

2γ√
π

)
e−(2γη)2

+ ε√
π

[
(2γη)2 − 8γ

3
(2γη)3 − 1

2

]
e−(2γη)2

+ ε2
√

π

[
16γ

9
(2γη)6 − 4

3
(2γη)5

+
(

1

4γ
− 4γ

)
(2γη)4 + 5

3
(2γη)3

− 1

4γ
(2γη)2 − 1

16γ
− γ

3

]
e−(2γη)2 + O(ε3) (53)

his asymptotic expansion comes from applying a regular per-
urbation in ε to the steady-state version of the Smoluchowski
q. (23), using the ascending velocity coefficients (24)–(26).

nserting the PDF (53) into the moment formula

k(s) = 〈ηk〉[I] =
∫ ∞

−∞
ηkP(η, s) ds (54)

e find the initial values of the first two moments:

1(0) = −ε

2γ

[
1 + ε

(
5

8γ

)
+ · · ·

]
(55)
4γε

ith

= 8γ2ε − 2γε2 (61)

=
(

1 + 2ε2 + 5ε3

4γ

)2

(62)

hat we have done is tantamount to concentrating the (already
arrow) PDF into a delta function, and this well-known argument
s one way of viewing the Peterlin closure [6,11–13,24].

Our main purpose in this section is to go a step further, and
stimate the time-varying width—equivalently, M(s)—of the
pproximate Gaussian peak P(η, s). To this end, we shall, at
ach time s, impose the Smoluchowski Eq. (50) upon the Gaus-
ian form (57) at only one special point: η = C(s). This crude
collocation” scheme,

∂P
∂s

∣∣∣∣
η=C(s)

= V ′[C(s)]P[C(s), s] + ε

2

[
∂2P
∂η2

]
η=C(s)

(63)

eads to an ODE for M(s):

dM
ds

= ε − 2V ′[C(s)]M(s) = ε −
(

A

As + B

)
M(s) (64)

hich can also be solved analytically.

(s) = (As + B)−1
[
BM(0) + ε

(
A

2
s2 + Bs

)]
(65)

or the initial value we make use of Eqs. (55) and (56)

(0) = M2(0) − [M1(0)]2 (66)
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To illuminate the operative physics, we note the following
feature of the Gaussian shape (57):

P[C(s), s] = −M(s)

[
∂2P
∂η2

]
η=C(s)

(67)

Inserting this into the collocation Eq. (63), we find a form

∂P
∂s

∣∣∣∣
η=C(s)

=
{ ε

2
− M(s)V ′[C(s)]

}[
∂2P
∂η2

]
η=C(s)

= Deff

[
∂2P
∂η2

]
η=C(s)

(68)

that looks like a diffusion equation, wherein the slope of the ad-
vective velocity reduces the effective diffusion coefficient Deff.
On reflection, this behavior is not surprising, because the de-
crease in velocity in the direction of the peak’s motion has the
effect of gathering probability together and thereby narrowing
the peak, against the dispersing influence of diffusion. The stan-
dard definition of the diffusion coefficient in terms of the rate of
growth of the second moment,

dM
ds

= 2Deffs (69)

leads precisely back to the ODE (64).
The above arguments are summarized in the following oper-

Fig. 7. Decay of the stress during relaxation from the final steady state in uni-
axial extension for ε = 0.2 and γ = 1. Numerical results are compared with
the Gaussian approximation (57), (60) and (65). The Peterlin closure (FENE-P)
is not plotted, as it would also be almost indistinguishable from the numerical
curve.

merics [11,12,24]. Thus, finite (and increasing) width of the
PDF seems to have no important consequence for the rheology
of stress relaxation.

8. Concluding remarks

Loops in the stress–extension plane are observed in transient
elongation, because different PDFs in the stretching versus re-
laxing phases can be characterized by the same value of the sec-
ond moment, while leading to different stresses [21,24,27,29].
At least a second-order closure, such as the L closure of Lielens
et al. [11,12], is required to capture this memory effect. A one-
parameter family of PDFs will necessarily lock the stress and
extension together in a single-valued dependence. For example,
the Peterlin closure yields a stress–extension curve that can only
follow the relaxation portion of Fig. 5. For this regime it is very
accurate.

For one special case of a strain-relaxation cycle, the asymp-
totic formulas derived in this paper gave a rigorous and detailed
analytical representation of the underlying features of the PDFs
that are responsible for memory effects, and also justified the L
closure—which was originally motivated by numerical obser-
vations.

For stretching of a FENE dumbell in a uniaxial exten-
sional flow, singular perturbation theory was combined with
the method of multiple scales (Sections 1–5) to yield accurate
f
s
l
c
l
o
D
c
l
a
e
m
c
[

ormulas for the entire PDF, from which the stress buildup and
tress–extension curves could then be calculated (Section 6). The
eading-order asymptotics explained why the stress–extension
urves for different finite-extensibility parameters should all col-
apse onto a single straight line, Eq. (46). This conclusion rig-
rously corroborated an analogous numerical observation by
oyle et al. [6] with regard to transient stress–birefringence

urves, and—for large Weissenberg number—agreed with the
arge-strain plateau in the transient stress-optic coefficient,
s described by Sizaire et al. [21]. The asymptotic stress–
xtension curve for stretching compared favorably with its nu-
erical counterpart. The accuracy of this curve was roughly

omparable to that of the L closure; cf. [[11], Fig. 14] and
[12], Fig. 10].
ational procedure. To obtain the transient PDF P(x, t̂) for relax-
ation of the FENE dumbbell from its fully stretched configura-
tion, one should insert

η = ε−1
[
x − ε−1

√
1 − ε

2γ

]
and s = ε−3 t̂ (70)

into the Gaussian formula (57), where the time evolution of the
coefficients C(s) and M(s) is given by Eqs. (60) and (65). For
ε = 0.2 and γ = 1, Fig. 6 compares a full numerical solution of
the Smoluchowski equation (47) and (48) with our Gaussian ap-
proximation. Excellent agreement is observed. The correspond-
ing stress decay curve is shown in Fig. 7, and the stress–extension
curve appears in Fig. 5.

It is worth noting that—for stress relaxation—the Peterlin
closure (which assumes a delta function spike for the PDF in-
stead of the broadening peak) yields stress decay and stress ex-
tension curves that are almost indistinguishable from the nu-

Fig. 6. Asymptotic vs. numerical PDFs for stress relaxation from the terminal
steady state in uniaxial extension for ε = 0.2, γ = 1 (L = 5, � = 5).
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For relaxation of the FENE dumbbell from its fully stretched
configuration, a Gaussian approximation of the PDF—whose
time-dependent position and width were given by closed analyt-
ical formulas—matched the numerical results extremely well.
The slope of the advective velocity was interpreted as a negative
contribution to the effective diffusion coefficient.

A noteworthy feature of the asymptotics for both stretching
and relaxation of the FENE dumbbell was their utility even when
the perturbation parameter (inverse dumbbell length) was not
very small (ε = 0.2).

This paper illustrated the fruitful interplay between asymp-
totic theory and numerical analysis. The asymptotic approach
employed here would not have traction in the absence of phys-
ical insight or of knowledge of the key features of the PDF—
which for this problem were originally established by detailed
stochastic simulations [5,6,8,10–12,17].
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